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Abstract 

Sheared wind on a sandpile model produces a decorrelation of transport events and eliminates events with scale lengths 
on the order of the box size. The effective diffusion coefficient changes its asymptotic behavior from D,rr a x”, with CY 
close to 1, to Deff a x0. These asymptotic limits are consistent with analytical calculations based on the Burgers equation and 
have implications for SOC theory as a paradigm for turbulent transport. 

Motivated by the complicated dynamics observed 
in simulations and experiments of gradient driven 
turbulent transport, a simple paradigmatic transport 
model based on the ideas of self-organized criticality 
(SOC) has been developed and investigated [l]. In 
many cases a strong coupling exists between the 
turbulence and bulk flows in the system. If the bulk 
flows are uniform the turbulence imbedded in the 
flow is simply advected and the dynamics are usu- 
ally not changed. Often, however, such flows are 
spatially dependent (sheared) and therefore can have 
an impact on the dynamics of the system [2,3]. SOC 
systems have been the focus of much investigation 
recently due to the broad relevance of many of the 
characteristics of these systems [4-61. For example, 
l/f noise is a ubiquitous feature in many diverse 
physical systems from starlight flicker through river 
flows to stock market data. Additionally many of 
these systems (and others) exhibit a remarkable spa- 
tial and temporal self-similar structure. The physical 
and dynamical self-similarity that is exhibited by 
these systems is very robust to perturbations and is 
not necessarily close to any “linearly marginal” 

state such as the angle of repose for a sandpile. It is 
this self-similarity and non-linear self organization 
that leads to the term “self-organized criticality” [4]. 
In many systems (magnetically confined plasmas for 
example), the transport of constituents down their 
ambient gradient is thought to be dominated by 
turbulent transport. That is a turbulent relaxation of 
the gradient. The turbulence itself is often driven by 
the free energy in the gradient. It is this combination 
of turbulent relaxation removing the source of free 
energy thereby turning off the turbulence which then 
allows the gradient to build back up which allows 
the development of robust (albeit fluctuating) pro- 
files. The dynamics of such systems can be computa- 
tionally investigated with a cellular automata model 
of a running sandpile. This model allows us to 
investigate the major dynamical scales and the effect 
of an applied sheared flow on these dominant scales. 
In addition to allowing the paradigmatic investiga- 
tion of turbulent transport, the introduction of sheared 
flow (wind) and the determination of transport coef- 
ficients in sandpiles, both of which naturally arise in 
the context of magnetically confined plasmas, act as 
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a novel and important extension to the chaotic dy- 
namics of SOC systems. 

Starting from the assumptions of the importance 
of near marginality to turbulent transport and the 
importance of turbulent transport to relaxation of 
gradients a very simple natural model presents itself. 
The relationship between the simple “sandpile” 
model and turbulent transport can best be summa- 
rized as follows. In this model local turbulent fluctu- 
ations are excited by the local gradient exceeding 
marginality, the local fluctuations in turn relax the 
local gradient, transporting the excess gradient down 
the profile. This sandpile SOC model has the gradi- 
ent modeled by the slope of the sandpile while the 
turbulent transport is modeled by the local amount 
which falls, overturns, when the sandpile becomes 
locally unstable. The system is driven by noise from 
the sources of the transporting quantities or fluctua- 
tions in the background transport which in the sand- 
pile model is represented by a random “rain” of 
sand grains on the pile. This model allows us to 
study a paradigm of the dynamics of the transport 
independent of the local instability mechanism and 
independent of the local transport mechanism. 

A standard cellular automata algorithm [7] is used 
to study the dynamics of the driven sandpile. The 
domain is divided into cells which are evolved in 
steps. First, sand grains are added to the cells with a 
probability P,,. Next, all the cells are checked for 
stability against a simple stability rule and either 
flagged as stable or not and finally the cells are time 
advanced, with the unstable cells over turning and 
moving their excess “grains” to another cell with 
the size, distance and direction of the fall being 
determined by the overturning rule. The most simple 
set of rules used are: if 2, > Zcrit then h, = h, - Nf 
and h,+, =h,+, + Nf. With h, defined as the height 
of cell n, Z, being the difference between h, and 
h “+ ,, Zcrit is the critical gradient and Nr is the 
amount of sand that falls in an overturning event. In 
terms of the normal physical quantities we associate 
with turbulent systems, Z,, is the critical gradient at 
which fluctuations are unstable and grow while Nr is 
the amount of gradient that is transported (or re- 
laxed) by a local fluctuation. 

The simulations are done in a two-dimensional 
system where x is equivalent to the radial coordinate 
(down the sandpile) and y to the poloidal angle 

(around the sandpile), the sandpile is periodic in this 
direction. We have used a variety of domain sixes 
varying from 50 by 1 (X and y directions) to 800 by 
100 with most of the 2D calculations being per- 
formed at 200 by 50. The boundary conditions for 
the computation domain are periodic in the y direc- 
tion, open at x = L (particles that reach the edge are 
lost) and closed at x = 0. Computations are typically 
started from a marginal state (i.e. Z,, = Z,,, - 1) and 
allowed to relax to the steady state. In order to 
accumulate sufficient statistics the system is iterated 
for 10’ to 10’ time steps after saturation is reached. 
The main diagnostic for the sandpile model avalanche 
dynamics is the time history of the number of flips 
(overturning events), with both the total number in 
the system and the number for flips for individual y 
values tracked. 

One of the characteristics of a SOC system is that 
steady state time average profiles are globally lin- 
early stable (sub-marginal) and yet are able to main- 
tain active transport dynamics. This is in contrast to 
naive marginal stability arguments. The one condi- 
tion needed for the maintenance of a sub-critical 
profile rather than a marginal profile is that Nr be 
greater than 1. This is equivalent to saying that a 
turbulent eddy will attempt to transport enough to 
level the local gradient in one eddy turnover. If 
Nr = 1 then whenever a sand grain is dropped onto 
the pile it will fall all the way down to the bottom of 
the pile and exit at the base. This fall is not an 
organized avalanche in the sense that it will not grow 
as cascades down the pile because only the local cell 
with the extra grain is unstable (super-marginal). 

For the transport problem, an important parameter 
to introduce is the effective diffisivity in the steady 
state, Ddf. Deff is defined as the ratio of the aver- 
aged local flux to the averaged local gradient, Deff = 
(T)/l(dh/dx) 1. S’ mce the system is in steady 
state, the average local flux through a radial position 
x0 is simply the average number of grains falling 
into the region above x0, that is PO x0. Therefore, 
De, = PO x0/ I (d h/d X) I. The general dependence 
of (dh/d x) on Nr can be determined by calcula- 
tions in which PO is held constant and Nr is varied. 
It is found that the dependence of (dh/dx) on Nf is 
linear, in particular for Zcrit = 80, (d h/d x) = 80 - 
0.5N,. Keeping in mind that Nr is the amount that 
falls, or how much the gradient is relaxed, when a 
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Fig. 1. The time average steady state profiles of a marginal 
sandpile (N, = 1) and a SOC sandpile (Nr = 3) with all other 
parameters the same. Since both have the same grain drop rate 
they are therefore transporting the same flux. 

site becomes unstable this dependence indicates how 
sub-marginal on average a system is likely to be 
given a local transport mechanism. Additionally the 
numerical calculations indicate that, for a fixed value 
of N,, (dh/dx) is essentially a function of P,x. 
For a fixed N,, the numerical results for several 
values of P, and different box sizes collapse in a 
single curve when plotted versus Pox (Fig. 2). This 
function is well described by a function of the form 

time _ 

-1.5 -, , , , , , I  (  ,  ,  ,  ,  ,  

-7 dh/dx without shear 

0 0.2 0.4 0.6 0.8 1 1.2 
P,x 

Fig. 2. The slope of the sandpile as a function of Pox for cases 
with and without shear for Nr = 3, Zcri, = 8, PO = 0.007 and 
L = 200. Note the change in functional form and the region with 
P, x > 0.7 in which the slope is greater than the shear free SOC 
slope. 

- UP, X)E. The coefficient A is a linear function of 
N,, the exponent E has a weaker dependence on N,, 
for Nf = 3, E = 0.02 f 0.01. Hence, Qff has a func- 
tional dependence of (PO xjP with p = I - E = 0.98. 
This result is consistent with the analytical determi- 
nations [2,4] of the diffusion coefficient. These cal- 
culations are limited to the range PO x < N,/2. When 
the average local flux exceeds NJ2 a distinct change 

time ___C 
Fig. 3. Time histories of the avalanches at a fixed y both with and without sheared flow in the middle. ?he case without the flow shows 
avalanches of all lengths stretching across the entire domain while the case with sheared flow exhibits a breakup of the avalanches in the 
sheared region (the center). 
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in the dynamics occurs. The average local gradient 
jumps from the sub-marginal SOC gradient to a 
super-marginal gradient. This jump is coincident with 
a region in which the avalanches are occurring al- 
most constantly as would be implied by the super- 
marginal gradient. This region allows for a natural 
definition of an edge zone, but precludes the exten- 
sion of the scaling calculations to large values of 
P, x. 

Into the basic model described above we can also 
add a shear flow in the y direction (sheared wind 
blowing on the sandpile). This is implemented by 
adding a constant flow in one direction to the top of 
the sandpile and a constant flow in the other direc- 
tion to the bottom. The two constant flow regions are 
then connected by a linear shear flow region. The 
shear is defined as the velocity increment, AV, be- 
tween two adjacent cells in the x direction. The flow 
is added to the dynamics in the time advance step 
after moving any falling grains to their new posi- 
tions. The impact of the shear flow is quantified by 
changing a shear parameter, S, equal to AV times 
the size of the shear region, Ls (S = Ls AV). 

The effect of the shear flow on the transport 
dynamics can be first and most easily observed in a 
time history of the overturning sites in the sandpile 
(Fig. 3). The sheared region in the middle of the 
domain is easily differentiated from the unsheared 
ends by the absence of correlated transport events 
(avalanches) in the shear zone. The difference in 
avalanche dynamics is visually striking and shows 
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Fig. 4. Frequency power spectra of the number of flips for a 
simulation with shear and one without shear. Note the decrease in 
power at low frequency and the increase iu power at high fre- 
quency. 
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Fig. 5. The decorrelation time T,, = 1 /[/d&E) do//S(E) do] as 
a function of the shear parameter. Note that the decorrelation time 
decreases with increasing shear parameter suggesting fewer long 
transport events and more short ones. 

clearly the decorrelation of transport events by the 
shear flow. In the PDF of the flips, one can see a 
marked decrease in the variance for a running sand- 
pile with shear when compared to one without shear. 
This trend continues when the shear and size of the 
shear zone increase. This suggests that the larger 
scale transport events are being suppressed by the 
shear and, since the total flux must remain the same, 
the medium and small scale events must increase to 
make up the difference. It should be kept in mind 
that the number of flips is not strictly a measure of 
avalanche size as 3 avalanches of size 5 occurring at 
the same time give the same number of flips as one 
avalanche of size 15. Therefore the decorrelation of 
the large scale avalanches must be made up to some 
degree by multiple simultaneous small slides. Com- 
paring the frequency spectra of the number of flips 
for an unsheared case with a sheared case (Fig. 4) 
one can see a suppression of the low frequency end 
of the spectrum and an increase in the high fre- 
quency end. This effect can be quantified through the 
mean frequency a, P = /wS(E) do//S(E) dw. 
Fig. 5 shows the variation in TV = l/a as the shear 
parameter is increased. This figure shows the decor- 
relation time of the transport decreasing as the shear 
parameter increases. Because it is transport events 
which are being modified and not the underlying 
fluctuations this transport decorrelation time should 
not be identified with the standard turbulent decorre- 
lation time. In the shear free case the transport 
decorrelation time is longer than L2 while in the 
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sheared case the decorrelation time becomes shorter 
than L2. 

In the shear flow region, there is a substantial 
change of the steady state sandpile slope. Again we 
find a universal curve for (dh/dx) when plotted 
versus P,x (Fig. 2). In this case, the slope of h 
cannot be described by a power function, but is just a 
linear function of P, x. As a consequence, the effec- 
tive diffusion coefficient is 

Asymptotically, for x + @J, D,rr --) b-’ and becomes 
independent of x. For Nr = 3 and AV = 1, a fit to all 
the data gives a = 4.85 and b = 1.59. This change in 
functional form is consistent with the change in 
dynamics predicted by analytic work on the Burgers 
equation model by Diamond and Hahm [l]. The 
analytic form of the diffusion coefficient goes from 
infrared divergent (D a k; ’ ) in the shear free case 
to independent of k, (D a k:) in the sheared flow 
case. The asymptotic limit (x + a) of the diffusion 
coefficients in the sandpile model shows the same 
dependence going to a constant with shear and k;“.98 
without. 

Due to the discrete nature of the system the 
impact of increasing AV saturates when AV is larger 
than one. This is because when AV is larger than 
one all avalanches down to the cell size are decorre- 
lated. Strong sheared flow with a given scale length 
will decorrelate all transport events with a larger 
scale length. Therefore, if the shear scale length is 
made smaller than the smallest transport event (which 
would be unphysical in a continuous turbulent sys- 
tem) all the avalanches would be decorrelated. Be- 
cause of this effect, the method used to investigate 
the dependence of the asymptotic Deff on the shear 
rate was to decrease AV below 1. The effective 
asymptotic diffusivity is found to decrease with in- 
creasing shear as D,,,a(AV)-“~51. This is in com- 
parison to the analytic form from the Burgers equa- 
tion which gives a Deff dependence on AV with 
y = 4/5. While the coefficients are not the same, 
given the differences in the models, one being con- 
tinuous the other being discrete, the qualitative 
agreement is remarkable. 

To compare analytical and numerical functional 

dependences on PO is not easy. The reason is that to 
determine this dependence it is necessary to go to 
relatively large values PO, but due to the restriction 
Pox < N,/2, this implies x + 0. In this limit, the 
separate dependence of Deff on PO is very weak. 

In the model as presented up to this point, the 
inclusion of shear either can cause a transport barrier 
(for PO x > Nr/4), a steepening of the gradient with 
the coincident decrease in the effective diffusion 
coefficient, or an anti-transport barrier (for PO x < 
N/4) in which the gradient is further reduced and 
the effective diffusion coefficient is therefore in- 
creased. The first region is the regime relevant to 
systems in the continuous limit. Additionally, it 
should be kept in mind that the modification of the 
critical slope (linear stabilization) by the shear flow 
effect has not been included in this model. 

In conclusion, within the constraints of a cellular 
automata model of critical gradient dynamics (the 
running sandpile model) it is found that: 

(1) The addition of sheared flow to the running 
sandpile has a major impact on the transport dynam- 
ics. The dominant transport events move from sys- 
tem size to smaller scales. 

(2) With moderately strong driving the inclusion 
of shear can cause the formation of a “transport 
barrier” (a region with decreased diffusivity). How- 
ever in this model, which does not include shear 
effects on linear stability, very weak driving can lead 
to an increased diffusivity in the shear region. When 
Zcri, is modified to include shear stabilization in an 
ad hoc manner the shear region always exhibits a 
decreased diffusivity with the coincident transport 
barrier. 

The use of a SOC model as a paradigm for 
turbulent transport shows much promise in the model 
ability to capture many aspects of the dynamics 
independent of the details of the local turbulence 
drive. Some of these features include: 

(a) Robust transport can occur with profiles which 
are on average sub-marginal. This may be relevant to 
the experimental observations in magnetically con- 
fined plasmas that over much of the radius the 
profile appears to be marginal or sub-marginal to 
most of the modes suspected of dominating trans- 
port. 

(b) Transport events, avalanches, are found on all 
size and time scales in the running system. The 
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coherence of large transport events can make the 
transport scale with the system size even though the 
local transport mechanism is much smaller scale. 

(c) A distinct transition in the scaling of transport 
dynamics is observed with the addition of a sheared 
flow. This type of behavior is observed to occur in 
turbulent systems and may be related to the L-H 
transitions in magnetically confined plasmas [8]. 
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